Precision measurement of $\pi\pi$ scattering lengths at NA48/2

Andrea Bizzeti University of Modena and Reggio Emilia and I.N.F.N. Sezione di Firenze, Italy

on behalf of the NA48/2 collaboration: Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Vienna

MENU2010 – Williamsburg, Virginia, U.S.A. – June 2, 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへ⊙

The NA48/2 experiment at CERN SPS: setup and data

 $K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu$ (*K*_{e4}) decays: Form Factors and $\pi\pi$ scattering lengths

NA48/2 K_{e4} and $K_{3\pi}$ results: comparison

The NA48/2 experiment at CERN SPS: setup and data

 $K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu$ (*K*_{e4}) decays: Form Factors and $\pi\pi$ scattering lengths

NA48/2 K_{e4} and $K_{3\pi}$ results: comparison

Why to measure $\pi\pi$ scattering lengths

- ► a_0 and a_2 are the S-wave $\pi\pi$ scattering lengths in isospin states I=0 and I=2
- They are related to fundamental parameters of Chiral Perturbation Theory (ChPT)
- Theoretical calculations based on ChPT provide accurate predictions for their values
- A precise measurement of a₀ and a₂ allows to test the theory and provides important constraints for the ChPT Lagrangian parameters

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

How to measure $\pi\pi$ scattering lengths

3 kinds of measurements have been developed:

Pionium atoms:

DIRAC (CERN SPS) $(\pi\pi)$ lifetime PLB 619 (2005) 50-60

 $K_{3\pi}$ modes (cusp):

BR(
$$K^{\pm} \to \pi^{\pm}\pi^{0}\pi^{0}$$
) = (1.757 ± 0.024) · 10⁻²
 \longrightarrow NA48/2 (CERN SPS): 60 · 10⁶
EPJC 64 (2009) 589-608

$$\begin{array}{ll} {\rm BR}(K_L^0 \to \pi^0 \pi^0 \pi^0) = (19.56 \pm 0.14) \cdot 10^{-2} \\ {\rm KTeV} \ ({\rm FNAL \ Tevatron}). & 68 \cdot 10^6 \\ {\rm NA48} \ ({\rm CERN \ SPS}): & 100 \cdot 10^6 \end{array}$$

 K_{e4} decays:

BR($K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu$) = (4.09 ± 0.09) · 10⁻⁵ Very clean environment, but limited statistics: S118 (CERN PS): 0.03 · 10⁶ E685 BNL experiment 0.4 · 10⁶ \rightarrow NA48/2 (CERN SPS): 1.1 · 10⁶

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

The NA48/2 experiment at CERN SPS: setup and data

 $K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu$ (*K*_{e4}) decays: Form Factors and $\pi\pi$ scattering lengths

NA48/2 K_{e4} and $K_{3\pi}$ results: comparison

The NA48/2 experiment at CERN SPS

The NA48/2 beams

- Simultaneous [$P = (60 \pm 3)$ GeV/c] K^+ and K^- beams \Rightarrow large charge symmetrization of experimental conditions
- Beams coincide within $\sim 1 \text{ mm}$ along the 114 m decay volume.
- Flux ratio $K^+/K^- \sim 1.8$.

The NA48/2 detectors

► LKr electromagnetic calorimeter: quasi-homogeneous, high granularity $\sigma[M(\pi^{\pm}\pi^{0}\pi^{0})] = 1.4 \text{ MeV}/c^{2}$

> • Magnetic spectrometer: 4 DCH + dipole magnet $\sigma[M(3\pi^{\pm})] = 1.7 \text{ MeV/}c^2$

 \Rightarrow e/ π discrimination (E/p)

 Scintillator hodoscope for charged fast trigger: σ(t) = 150 ps

(日) (四) (문) (문) (문)

- hadron calorimeter
 - muon counters
- photon vetoes

The NA48/2 Data sample

Main goal of NA48/2: search for CP violation in $K^{\pm} \rightarrow 3\pi$ Dalitz plots

Two years of data taking: 2003 run (\sim 50 days) + 2004 run (\sim 60 days)

Total statistics:

 $\mathbf{K}^{\pm} \rightarrow \pi^{+} \pi^{-} \pi^{\pm} : \qquad \sim 4 \cdot 10^{9}$ $\mathbf{K}^{\pm} \rightarrow \pi^{0} \pi^{0} \pi^{\pm} : \qquad \sim 1 \cdot 10^{8}$ $\mathbf{K}^{\pm} \rightarrow \pi^{+} \pi^{-} e^{\pm} \nu : \qquad \sim 1.13 \cdot 10^{6}$

 $\pi\pi$ scattering lengths measurement from $K_{3\pi}$ decays ("cusp") already published \rightarrow EPJ C 64 (2009) 589-608

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

The NA48/2 experiment at CERN SPS: setup and data

 $K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu$ (*K*_{e4}) decays: Form Factors and $\pi\pi$ scattering lengths

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

NA48/2 K_{e4} and $K_{3\pi}$ results: comparison

Ke4 decays: kinematics and formalism

Five kinematic variables (Cabibbo-Maksymowicz 1965):

$$s_{\pi} = M_{\pi\pi}^2, \quad s_e = M_{e\nu}^2, \ \cos \theta_{\pi}, \quad \cos \theta_e, \quad \phi$$

Partial Wave expansion of the amplitude into s and p waves + Watson theorem for δ_l^I $\Rightarrow \delta_0^0 = \delta_s$ and $\delta_1^1 = \delta_p$

2 Axial Form Factors (F and G): $F = F_s e^{i\delta_s} + F_p e^{i\delta_p} \cos \theta_{\pi}$ $G = G_p e^{i\delta_p}$

1 Vector Form Factor (*H*): $H = H_p e^{i\delta_p}$

$$K^+(\text{at rest}) \rightarrow \pi^+\pi^- e^+\nu$$

Fit the distribution in the fivedimensional space of the Ca.Ma. variables with 4 form factors and only one phase shift, assuming identical phases for the p-wave form factors

The fit parameters are: $F_p \ F_p \ G_p \ H_p$ and $\delta = \delta_s - \delta_p$ $(F_p, F_p, G_p, H_p, \delta \text{ are real})$

Ke4 decay: Event selection and background rejection

Signal ($\pi^+\pi^-e^\pm\nu$) topology:

- 3 charged tracks and a "good" vertex
- ▶ 2 opposite sign pions, 1 electron $[E_{LKr}/p \simeq 1]$
- some missing energy and $p_T(\nu)$
- good reconstructed P_K (missing ν hypothesis)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Ke4 decay: Event selection and background rejection

Signal ($\pi^+\pi^-e^\pm\nu$) topology:

- 3 charged tracks and a "good" vertex
- 2 opposite sign pions, 1 electron $[E_{LKr}/p \simeq 1]$
- some missing energy and $p_T(\nu)$
- good reconstructed P_K (missing ν hypothesis)

Background main sources:

 $K^+ \to \pi^+ \pi^- \pi^+ \qquad (\pi^+ \to e^+ \nu \quad \text{or} \quad \pi^+ \text{ mis-ID})$ $K^+ \to \pi^+ \pi^0 \qquad (\pi^0 \to e^+ e^- \gamma \text{ and } e^- \text{ mis-ID})$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○日 - のへで

Ke4 decay: Event selection and background rejection

Signal ($\pi^+\pi^-e^\pm\nu$) topology:

- 3 charged tracks and a "good" vertex
- ▶ 2 opposite sign pions, 1 electron $[E_{LKr}/p \simeq 1]$
- some missing energy and $p_T(\nu)$
- good reconstructed P_K (missing ν hypothesis)

Background main sources:

► $K^+ \to \pi^+ \pi^- \pi^+$ ($\pi^+ \to e^+ \nu$ or π^+ mis-ID)

•
$$K^+ \to \pi^+ \pi^0$$
 $(\pi^0 \to e^+ e^- \gamma \text{ and } e^- \text{ mis-ID})$

Control sample from data (assuming $\Delta S = \Delta Q$):

►
$$K^{\pm} \rightarrow \pi^{\pm} \pi^{\pm} e^{\mp} \nu$$
 ("Wrong-Sign" events)
2 same sign pions + 1 electron

- Ratio RS/WS ("Right-Sign"/"Wrong-Sign") events =
 - 2/1 if coming from $K_{3\pi}$ (dominant)
 - 1/1 if coming from $K_{2\pi}$

Ke4 decay: background rejection Total background level $\sim 2 \times 0.3\%$

- estimated from WS events in Data
- checked with Monte Carlo simulation of background processes

Data/MC ratio black: no BKG subtraction red: subtraction = $2 \times WS$

<ロ> (四) (四) (三) (三) (三) (三)

Ke4 decay: fitting procedure Total (2003+2004) 1.13 million K_{e4} decays

Using iso-populated boxes in the 5-D space of the Ca.Ma variables $(M_{\pi\pi}, M_{e\nu}, \cos \theta_{\pi}, \cos \theta_{e} \text{ and } \phi)$ we define a grid of

 $10 \times 5 \times 5 \times 5 \times 12 = 15000$ variable size boxes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Ke4 decay: fitting procedure

Total (2003+2004) 1.13 million K_{e4} decays

Using iso-populated boxes in the 5-D space of the Ca.Ma variables $(M_{\pi\pi}, M_{e\nu}, \cos \theta_{\pi}, \cos \theta_{e} \text{ and } \phi)$ we define a grid of

 $10 \times 5 \times 5 \times 5 \times 12 = 15000$ variable size boxes

In each $M_{\pi\pi}$ "slice" (containing 1500 boxes):

- ▶ a set of 4 fit parameters (F_p, G_p, H_p, δ) is extracted
- the normalization F_s^2 is obtained by the ratio Data / MC

Data sample (events)Monte Carlo sample (events) K_{e4}^+ 726 400 (48 / box)17.4 million (1160 / box) K_{e4}^- 494 400 (27 / box)9.7 million (650 / box)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ke4 decay: fitting procedure

Total (2003+2004) 1.13 million K_{e4} decays

Using iso-populated boxes in the 5-D space of the Ca.Ma variables $(M_{\pi\pi}, M_{e\nu}, \cos \theta_{\pi}, \cos \theta_{e} \text{ and } \phi)$ we define a grid of

 $10 \times 5 \times 5 \times 5 \times 12 = 15000$ variable size boxes

In each $M_{\pi\pi}$ "slice" (containing 1500 boxes):

- ▶ a set of 4 fit parameters (F_p, G_p, H_p, δ) is extracted
- the normalization F_s^2 is obtained by the ratio Data / MC

	Data sample (events)	Monte Carlo sample (events)
K_{e4}^+	726 400 (48 / box)	17.4 million (1160 / box)
K_{e4}^{-}	494 400 (27 / box)	9.7 million (650 / box)

 K^+ and K^- samples fitted separately in 10 independent $M_{\pi\pi}$ slices, then combined in each slice according to their statistical error.

No assumption is made on the variation of the phase δ (and FF) from one $M_{\pi\pi}$ slice to the next (i.e. "model independent" analysis)

Ke4 decay: Data / MC comparison (after the fit)

- 4 日 1 - 4 日 1 - 4 日 1 - 日 - 一日 - 今へで

Ke4 Form Factors: fit results

A series expansion in $q^2 = [M_{\pi\pi}^2/(4m_{\pi}^2) - 1]$ and $M_{e\nu}^2/(4m_{\pi}^2)$ is used to describe the FF variations in the isospin symmetry limit :

$$F_s^2 = f_s^2 [1 + f_s'/f_s \ q^2 + f_s''/f_s \ q^4 + f_e'/f_s \ M_{e\nu}/(4m_{\pi}^2)]^2$$

$$G_p/f_s = g_p/f_s + g'_p/f_s q^2$$

$$F_p = f_p \qquad H_p = h_p$$

Systematics:

- mostly from background
 + acceptance control
- comparable or smaller than statistical error

Total statistics (2003+2004)

	value	stat	syst
f_s'/f_s	0.152	± 0.007	± 0.005
f_s''/f_s	-0.073	± 0.007	± 0.006
f'_e/f_s	0.068	± 0.006	± 0.007
f_p/f_s	-0.048	± 0.003	± 0.004
g_p/f_s	0.868	± 0.010	± 0.010
g'_p/f_s	0.089	± 0.017	± 0.013
h_p/f_s	-0.398	± 0.015	± 0.008

Ke4 decays: phase shifts and $\pi\pi$ scattering lengths

The relation between the fitted $\delta = \delta_s - \delta_p$ phase shift and the $\pi\pi$ scattering length a_0 and a_2 can be predicted from data above 0.8 GeV using Roy equations (unitarity, analicity and crossing symmetries). Numerical solutions have been developed, valid only in the Isospin symmetry limit.

 \Rightarrow Need to take into account **isospin breaking**.

Electromagnetic effects

► Gamow-Sommerfeld factor:

"classical" Coulomb attraction between 2 charged pions

► PHOTOS generator:

real photon(s) emitted and tracked in the simulation

Mass effects ($m_u \neq m_d$, $m_{\pi^+} \neq m_{\pi^-}$)

recently computed as a correction to the measurements

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 larger than current experimental precision! (CGR, EPJ C59(2009) 777)

Ke4 decays: phase shifts and scattering lengths

▲ロト ▲御ト ▲ヨト ▲ヨト 三国 - の々で

Ke4 decays: comparison with theoretical predictions

<u>NA48/2 experimental results</u> (in $1/m_{\pi^+}$ units)

2-par. Fit: $a_0 = 0.2220 \pm 0.0128_{\text{stat}} \pm 0.0050_{\text{syst}} \pm 0.0037_{\text{th}}$ (correl. ρ =0.967) $a_2 = -0.0432 \pm 0.0086_{\text{stat}} \pm 0.0034_{\text{syst}} \pm 0.0028_{\text{th}}$

1-par. Fit (ChPT): $a_0 = 0.2206 \pm 0.0049_{\text{stat}} \pm 0.0018_{\text{syst}} \pm 0.0064_{\text{th}}$

Theory prediction

Assuming more inputs from ChPT and low energy constants (CGL NPB603(2001), PRL86(2001))

 $a_0 = 0.220 \pm 0.005$ $a_2 = -0.0444 \pm 0.0008$

The NA48/2 experiment at CERN SPS: setup and data

 $K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu$ (*K*_{e4}) decays: Form Factors and $\pi\pi$ scattering lengths

NA48/2 K_{e4} and $K_{3\pi}$ results: comparison

K_{e4} and $K_{3\pi}(\text{cusp})$ results comparison

Two independent measurements

- K_{e4} : 1.13 · 10⁶ events
- Cusp: $60 \cdot 10^6 K_{3\pi} (K^{\pm} \to \pi^0 \pi^0 \pi^{\pm})$ events

Different systematics

- K_{e4} : electron mis-ID and Background
- Cusp: Calorimeter and Trigger

Different theoretical inputs

• K_{e4} : Roy equations and Isospin breaking corrections

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• Cusp: Final state rescattering and ChPT expansion

Combined NA48/2 results from K3pi(cusp) and Ke4

The NA48/2 experiment at CERN SPS: setup and data

 $K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu$ (*K*_{e4}) decays: Form Factors and $\pi\pi$ scattering lengths

NA48/2 K_{e4} and $K_{3\pi}$ results: comparison

Conclusions

- The kaon decays give the possibility to study the low energy hadronic interaction with good precision
- Thanks to large statistics and high data quality, NA48/2 can check ChPT predictions with very high accuracy
- $\pi\pi$ scattering lengths from K_{e4} and $K_{3\pi}$ are fully consistent
- ► The achieved experimental precision on *a*₀ is now competitive with the theoretical precision (±0.005)
- The two precise and independent measurements of $\pi\pi$ scattering lengths provide a very strong test of the theory

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで